6 ноября, 16:43

Ученые ТПУ разработали новые металлогидридные накопители водорода

Ученые ИТМО создали недорогой и эффективный гибридный сорбент для очистки сточных вод от опасных тяжелых металлов ― ионов свинца и кобальта. Ноу-хау обладает флуоресценцией, позволяющей отслеживать заполняемость активных участков сорбента металлами и своевременно выполнять его замену. После очистки сточных вод новый сорбент не приходит в негодность: его можно восстанавливать с помощью слабого раствора кислоты и использовать повторно.   «Наш сорбент отличается достаточно низкой себестоимостью и простотой установки, поэтому для его использования будет достаточно классического оборудования для абсорбции. <…> После проведения опытно-промышленных испытаний мы рассчитываем расширить спектр использования сорбента и очищать с его помощью не только воду, но и почву», – рассказал младший научный сотрудник лаборатории EnergyLab Университета ИТМО Егор Рябченко.  Фото: 123RF  Подробнее на портале Научная Россия  #сорбенты #сточные_воды
Научная Россия
Научная Россия
Ученые ИТМО создали недорогой и эффективный гибридный сорбент для очистки сточных вод от опасных тяжелых металлов ― ионов свинца и кобальта. Ноу-хау обладает флуоресценцией, позволяющей отслеживать заполняемость активных участков сорбента металлами и своевременно выполнять его замену. После очистки сточных вод новый сорбент не приходит в негодность: его можно восстанавливать с помощью слабого раствора кислоты и использовать повторно. «Наш сорбент отличается достаточно низкой себестоимостью и простотой установки, поэтому для его использования будет достаточно классического оборудования для абсорбции. <…> После проведения опытно-промышленных испытаний мы рассчитываем расширить спектр использования сорбента и очищать с его помощью не только воду, но и почву», – рассказал младший научный сотрудник лаборатории EnergyLab Университета ИТМО Егор Рябченко. Фото: 123RF Подробнее на портале Научная Россия #сорбенты #сточные_воды
В РОССИИ РАЗРАБОТАЛИ МНОГОРАЗОВЫЕ НАКОПИТЕЛИ ВОДОРОДА  Ученые Томского политехнического университета разработали металлогидридные накопители водорода из сплава титана и железа. Накопители способны сорбировать и десорбировать водород несколько тысяч циклов с потерей эффективности не более 5–10%. Их стоимость в три раза ниже импортных аналогов.  Самый распространенный метод хранения водорода — баллоны под давлением 150 или 350 атмосфер. Однако использование высокого давления требует повышенных мер безопасности. В связи с этим ученые рассматривают использование гидридов металлов как альтернативный способ накопления и выделения водорода. Команда ученых ТПУ работает в направлении создания систем хранения водорода для многоразового стационарного использования на основе лантан-никеля и титан-железа.  «Сплав лантана и никеля  LaNi5  является одним из наиболее изученных в мире металлогидридом для накопления водорода, широко применяемым, и, одновременно, одним из самых дорогих. С ним нам удалось создать систему безопасного хранения водорода, для которой не нужны высокие температуры и давление. Однако часть сырья для сплава приходится закупать за рубежом, поэтому перед учеными ТПУ встала задача синтезировать металлогидриды из отечественной сырьевой базы. Нами были разработаны лабораторная установка хранения водорода с накопителями из сплава титана и железа, а также создан сам сплав», — рассказал доцент отделения экспериментальной физики Виктор Кудияров.  Теперь ученые ТПУ работают над улучшением накопителей на основе металлогидридов. Сейчас накопители используются в виде мелкодисперсных порошков, вместо этого планируется создание накопителей-компактов с добавками для повышения теплопроводимости.  Источник: Служба новостей ТПУ  #времявперёд!
Время - вперёд!
Время - вперёд!
В РОССИИ РАЗРАБОТАЛИ МНОГОРАЗОВЫЕ НАКОПИТЕЛИ ВОДОРОДА Ученые Томского политехнического университета разработали металлогидридные накопители водорода из сплава титана и железа. Накопители способны сорбировать и десорбировать водород несколько тысяч циклов с потерей эффективности не более 5–10%. Их стоимость в три раза ниже импортных аналогов. Самый распространенный метод хранения водорода — баллоны под давлением 150 или 350 атмосфер. Однако использование высокого давления требует повышенных мер безопасности. В связи с этим ученые рассматривают использование гидридов металлов как альтернативный способ накопления и выделения водорода. Команда ученых ТПУ работает в направлении создания систем хранения водорода для многоразового стационарного использования на основе лантан-никеля и титан-железа. «Сплав лантана и никеля LaNi5 является одним из наиболее изученных в мире металлогидридом для накопления водорода, широко применяемым, и, одновременно, одним из самых дорогих. С ним нам удалось создать систему безопасного хранения водорода, для которой не нужны высокие температуры и давление. Однако часть сырья для сплава приходится закупать за рубежом, поэтому перед учеными ТПУ встала задача синтезировать металлогидриды из отечественной сырьевой базы. Нами были разработаны лабораторная установка хранения водорода с накопителями из сплава титана и железа, а также создан сам сплав», — рассказал доцент отделения экспериментальной физики Виктор Кудияров. Теперь ученые ТПУ работают над улучшением накопителей на основе металлогидридов. Сейчас накопители используются в виде мелкодисперсных порошков, вместо этого планируется создание накопителей-компактов с добавками для повышения теплопроводимости. Источник: Служба новостей ТПУ #времявперёд!
В РОССИИ РАЗРАБОТАЛИ МНОГОРАЗОВЫЕ НАКОПИТЕЛИ ВОДОРОДА  Ученые Томского политехнического университета разработали металлогидридные накопители водорода из сплава титана и железа. Накопители способны сорбировать и десорбировать водород несколько тысяч циклов с потерей эффективности не более 5–10%. Их стоимость в три раза ниже импортных аналогов.  Самый распространенный метод хранения водорода — баллоны под давлением 150 или 350 атмосфер. Однако использование высокого давления требует повышенных мер безопасности. В связи с этим ученые рассматривают использование гидридов металлов как альтернативный способ накопления и выделения водорода. Команда ученых ТПУ работает в направлении создания систем хранения водорода для многоразового стационарного использования на основе лантан-никеля и титан-железа.  «Сплав лантана и никеля  LaNi5  является одним из наиболее изученных в мире металлогидридом для накопления водорода, широко применяемым, и, одновременно, одним из самых дорогих. С ним нам удалось создать систему безопасного хранения водорода, для которой не нужны высокие температуры и давление. Однако часть сырья для сплава приходится закупать за рубежом, поэтому перед учеными ТПУ встала задача синтезировать металлогидриды из отечественной сырьевой базы. Нами были разработаны лабораторная установка хранения водорода с накопителями из сплава титана и железа, а также создан сам сплав», — рассказал доцент отделения экспериментальной физики Виктор Кудияров.  Теперь ученые ТПУ работают над улучшением накопителей на основе металлогидридов. Сейчас накопители используются в виде мелкодисперсных порошков, вместо этого планируется создание накопителей-компактов с добавками для повышения теплопроводимости.
ВЕЛИКОРОСС
ВЕЛИКОРОСС
В РОССИИ РАЗРАБОТАЛИ МНОГОРАЗОВЫЕ НАКОПИТЕЛИ ВОДОРОДА Ученые Томского политехнического университета разработали металлогидридные накопители водорода из сплава титана и железа. Накопители способны сорбировать и десорбировать водород несколько тысяч циклов с потерей эффективности не более 5–10%. Их стоимость в три раза ниже импортных аналогов. Самый распространенный метод хранения водорода — баллоны под давлением 150 или 350 атмосфер. Однако использование высокого давления требует повышенных мер безопасности. В связи с этим ученые рассматривают использование гидридов металлов как альтернативный способ накопления и выделения водорода. Команда ученых ТПУ работает в направлении создания систем хранения водорода для многоразового стационарного использования на основе лантан-никеля и титан-железа. «Сплав лантана и никеля LaNi5 является одним из наиболее изученных в мире металлогидридом для накопления водорода, широко применяемым, и, одновременно, одним из самых дорогих. С ним нам удалось создать систему безопасного хранения водорода, для которой не нужны высокие температуры и давление. Однако часть сырья для сплава приходится закупать за рубежом, поэтому перед учеными ТПУ встала задача синтезировать металлогидриды из отечественной сырьевой базы. Нами были разработаны лабораторная установка хранения водорода с накопителями из сплава титана и железа, а также создан сам сплав», — рассказал доцент отделения экспериментальной физики Виктор Кудияров. Теперь ученые ТПУ работают над улучшением накопителей на основе металлогидридов. Сейчас накопители используются в виде мелкодисперсных порошков, вместо этого планируется создание накопителей-компактов с добавками для повышения теплопроводимости.
Забирай эксклюзивное предложение для пользователей Tek.fm от Газпромбанка
        
        🔥Нажми на меня
Tek.fm
Tek.fm
Забирай эксклюзивное предложение для пользователей Tek.fm от Газпромбанка 🔥Нажми на меня
Ученые ТПУ разработали многоразовые накопители водорода на основе отечественной сырьевой базы    Накопители способны сорбировать и десорбировать водород несколько тысяч циклов с потерей эффективности не более 5-10 %.  На сегодняшний день самый распространенный метод хранения водорода — баллоны под давлением 150 или 350 атмосфер. Однако использование высокого давления требует повышенных мер безопасности.   В связи с этим ученые рассматривают использование гидридов металлов как альтернативный способ накопления и выделения водорода.  При поддержке федеральной программы Минобрнауки России «Приоритет-2030»   было закуплено оборудование, которое позволяет провести полный цикл создания материала-накопителя — от получения слитка до изучения характеристик сорбции и десорбции водорода на лабораторной установке.  Подробнее о разработке читайте по ссылке.
ТПУ I Томский политех
ТПУ I Томский политех
Ученые ТПУ разработали многоразовые накопители водорода на основе отечественной сырьевой базы Накопители способны сорбировать и десорбировать водород несколько тысяч циклов с потерей эффективности не более 5-10 %. На сегодняшний день самый распространенный метод хранения водорода — баллоны под давлением 150 или 350 атмосфер. Однако использование высокого давления требует повышенных мер безопасности. В связи с этим ученые рассматривают использование гидридов металлов как альтернативный способ накопления и выделения водорода. При поддержке федеральной программы Минобрнауки России «Приоритет-2030» было закуплено оборудование, которое позволяет провести полный цикл создания материала-накопителя — от получения слитка до изучения характеристик сорбции и десорбции водорода на лабораторной установке. Подробнее о разработке читайте по ссылке.
В России импортозаместили накопители водорода  Металлогидридные накопители водорода из сплава титана и железа, стоимость которых в три раза ниже импортных аналогов, разработали ученые Томского политехнического университета.  Команда ТПУ ориентируется на использование гидридов металлов для безопасного хранения водорода без необходимости поддержания высоких температур и давления.   Сейчас учёные работают над улучшением этих накопителей, планируя перейти от порошковой к компактной форме с добавками для лучшей теплопроводности.  «Целью является создание крупных систем хранения водорода на отечественной сырьевой базе, которые будут подходить для массового производства и стационарного использования»,- отметил руководитель проекта Андрей Лидер.
Электричка ⚡️ Технологии
Электричка ⚡️ Технологии
В России импортозаместили накопители водорода Металлогидридные накопители водорода из сплава титана и железа, стоимость которых в три раза ниже импортных аналогов, разработали ученые Томского политехнического университета. Команда ТПУ ориентируется на использование гидридов металлов для безопасного хранения водорода без необходимости поддержания высоких температур и давления. Сейчас учёные работают над улучшением этих накопителей, планируя перейти от порошковой к компактной форме с добавками для лучшей теплопроводности. «Целью является создание крупных систем хранения водорода на отечественной сырьевой базе, которые будут подходить для массового производства и стационарного использования»,- отметил руководитель проекта Андрей Лидер.
СОЗДАН НОВЫЙ ЭФФЕКТИВНЫЙ КАТАЛИЗАТОР ДЛЯ СИНТЕЗА ВОДОРОДА  Ученые Федерального исследовательского центра «Казанский научный центр Российской академии наук» получили новый эффективный катализатор для синтеза водорода на основе соединений никеля.   Одним из активно исследуемых методов получения водорода является восстановление протонов, где ключевую роль играют катализаторы. Несмотря на то, что драгоценные металлы, такие как платина, демонстрируют высокую эффективность в качестве катализаторов, ограниченная доступность и высокая стоимость делают их применение в массовом производстве водорода экономически нецелесообразным. Учеными ФИЦ КазНЦ РАН был получен и всесторонне охарактеризован новый перспективный электрокатализатор процесса восстановления протонов на основе никеля, который не относится к группе благородных металлов и более доступен в использовании, рассказали в научном центре.  Исследования катионного фосфоросодержащего пинцерного комплекса никеля в качестве катализатора получения газообразного водорода с использованием доступной уксусной кислоты в качестве источника протонов проводились методами ЯМР-спектроскопии и монокристального рентгеноструктурного анализа, которые позволили точно определить структуру нового соединения и изучить его свойства в растворе и твердом состоянии.  Электрохимическое исследование показало, что в присутствии исследуемого комплекса восстановление протонов на различных электродных материалах в присутствии уксусной кислоты происходит при низкой разнице потенциалов, что выгодно отличает его от других известных катализаторов, при этом достигается высокий выход по току  до 85 .  Отмечается, что полученные результаты открывают новые возможности для использования комплексов металлов подгруппы никеля в качестве электрокатализаторов в процессах водородного синтеза, особенно в условиях низкой кислотности среды, для разработки более эффективных и экономичных способов получения водорода.  Источник: ТАСС  #времявперёд!
Время - вперёд!
Время - вперёд!
СОЗДАН НОВЫЙ ЭФФЕКТИВНЫЙ КАТАЛИЗАТОР ДЛЯ СИНТЕЗА ВОДОРОДА Ученые Федерального исследовательского центра «Казанский научный центр Российской академии наук» получили новый эффективный катализатор для синтеза водорода на основе соединений никеля. Одним из активно исследуемых методов получения водорода является восстановление протонов, где ключевую роль играют катализаторы. Несмотря на то, что драгоценные металлы, такие как платина, демонстрируют высокую эффективность в качестве катализаторов, ограниченная доступность и высокая стоимость делают их применение в массовом производстве водорода экономически нецелесообразным. Учеными ФИЦ КазНЦ РАН был получен и всесторонне охарактеризован новый перспективный электрокатализатор процесса восстановления протонов на основе никеля, который не относится к группе благородных металлов и более доступен в использовании, рассказали в научном центре. Исследования катионного фосфоросодержащего пинцерного комплекса никеля в качестве катализатора получения газообразного водорода с использованием доступной уксусной кислоты в качестве источника протонов проводились методами ЯМР-спектроскопии и монокристального рентгеноструктурного анализа, которые позволили точно определить структуру нового соединения и изучить его свойства в растворе и твердом состоянии. Электрохимическое исследование показало, что в присутствии исследуемого комплекса восстановление протонов на различных электродных материалах в присутствии уксусной кислоты происходит при низкой разнице потенциалов, что выгодно отличает его от других известных катализаторов, при этом достигается высокий выход по току до 85 . Отмечается, что полученные результаты открывают новые возможности для использования комплексов металлов подгруппы никеля в качестве электрокатализаторов в процессах водородного синтеза, особенно в условиях низкой кислотности среды, для разработки более эффективных и экономичных способов получения водорода. Источник: ТАСС #времявперёд!
Loading indicator gif